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Abstract In this work1 we introduce a complementarity-
based rolling friction model to characterize dissipative phe-
nomena at the interface between moving parts. Since the
formulation is based on differential inclusions, the model
fits well in the context of nonsmooth dynamics, and it does
not require short integration timesteps. The method encom-
passes a rolling resistance limit for static cases, similar
to what happens for sliding friction; this is a simple yet
efficient approach to problems involving transitions from
rolling to resting, and vice-versa. We propose a convex re-
laxation of the formulation in order to achieve algorithmic
robustness and stability moreover, we show the side effects
of the convexification. A natural application of the model
is the dynamics of granular materials, because of the high
computational efficiency and the need for only a small set
of parameters. In particular, when used as a micromechani-
cal model for rolling resistance between granular particles,
the model can provide an alternative way to capture the ef-
fect of irregular shapes. Other applications can be relatedto
real-time simulations of rolling parts in bearing and guide-
ways, as shown in examples.
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1 Introduction

Rolling resistance has attracted the interest of researchers
since the early ages of applied mechanics [37,8,26]. During
the past two centuries many models have been proposed,
depending on the required level of detail and on the type
of phenomena that cause the rolling resistance; usually the
number of parameters increases with the complexity of the
model. At one end of the spectrum, for instance, there is case
of the rolling tire, which often requires sophisticated models
with a large number of parameters [24]. In this work, on the
other hand, we are interested in a model that has a small
number of parameters but is easily applicable to problems
with large number of parts, or with requirements of high
computational efficiency in general. Superior performance
stems from the adoption of a set-valued formulation that
finds the solution in terms of a complementarity problem.

The advantages of a complementarity-based rolling fric-
tion model are multiple: it encompasses both the moving
and the static cases, it does not require regularization and
stiff force fields, it is an intuitive extension of the clas-
sic Coulomb-Amontons sliding friction model to the rolling
case, and it requires few parameters. A literature search re-
veals only a few contributions on this topic; among these we
cite the relevant work of [20].

A complementarity-based model can be particularly use-
ful in simulations that require algorithmic robustness andef-
ficiency, such as in real-time simulators, robotics, and virtual
and augmented reality. To this end we present an application
of the method to the efficient simulation of a linear guideway
with recirculating ball bearings.

Another motivation, also discussed in this paper, is the
simulation of rolling resistance among a large number of
parts. This happens, for example, when studying granular
materials, such as in the interaction between machines and
soils (tracked veicles on sand, tires on deformable ground,
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etc.) In the context of granular material dynamics, rolling
friction between microscopic spherical particles has the side
effect of approaching, on a macroscopic scale, the same
global behavior of the granular assembly if it were modeled
with many faceted irregular shapes: there exists a relation
between the degree of irregularity of the surfaces and the
rolling friction coefficient [9].

In the literature, typical approaches to the simulation of
contacts are based on the regularization of contact forces;
such forces, which are discontinuous in nature, are approx-
imated by smooth functions. Smoothness allows the prob-
lem to be dealt as system of ordinary differential equations
(ODEs), the drawback being that the resulting ODEs, while
tractable, are stiff, thereby requiring short timesteps and
leading to high computational times [12]. The adoption of
implicit integrators might alleviate, but not eliminate, the
issue of stiffness. For instance, since the seminal work of
[7], most implementations of the discrete element method
(DEM) for the simulation of granular materials are based
on regularization of contact forces and stiff ODEs. For very
large systems, regardless of the fact that one can exploit
powerful hardware, the computational time can be so high
that some problems become untractable.

For this reason in [32] we proposed an approach based
on differential variational inequalities (DVIs), as an alter-
native to the classical regularization-based approaches.The
DVI approach, whose capabilities are not necessarily con-
fined to granular problems, is a recent general way of deal-
ing with nonsmooth mechanical problems; the approach en-
compasses ODEs as subcases as well as complementarity-
based methods. In DVIs one can describe forces by means of
set-valued functions (multifunctions) that capture the nons-
mooth nature of models such as the Signorini contact law
or the Coulomb friction; no stiff regularizations of disconti-
nuities are needed because discontinuities are presented di-
rectly as complementarity constraints. Large timesteps are
allowed, but at the cost of solving a variational inequality
problem (a complementarity problem, in the simpliest case)
for each timestep [25].

A generic variational inequality (VI) is a problem of the
type

u ∈K : 〈F(u),y−u〉 ≥ 0 ∀y ∈K (1)

given a closed and convexK ∈ R
n set, and given a continu-

ousF(u) :K→R
n. We callSOL(K,F) the solution of prob-

lem (1). Variational inequalities are powerful mathematical
tools that have recently been used also in game theory, con-
tinuum mechanics and other scientific fields; a good refer-
ence is [18].

Assuming that the state of the system is defined byx,
one can define a DVI as the problem of finding the function

x on [0,T],

dx
dt

= f (t,x,u) (2)

u ∈ SOL(K,F(t,x(t), ·)) , (3)

along with boundary conditionsΓ (x(0),x(T)) = 0. For the
class of mechanical problems that we are interested in, for
example, the state can bex = {qT ,vT}T , with positionsq
and velocitiesv, and withu as the set of reaction forces,
that must satisfy a VI. References about DVIs can be found
in [29,28]; details about their practical implementationsin
terms of timestepping schemes can be found, for instance,
in [30,2,16,25,31,11].

In the following we show that the introduction of set-
valued rolling friction does not affect overly the complex-
ity of the original DVI problem; the computational re-
quirements are simply doubled with respect to the case of
just sliding friction. Also, spinning friction (also knownas
drilling friction) can be added easily in a similar way.

2 Set-valued rolling friction

In this paper we use set-valued functions to model rolling
contact forces between rigid parts. Such model has math-
ematical similarities with the model for sliding friction in
the Amontons-Coulomb theory; similar to the Amontons-
Coulomb friction model, the proposed approach requires a
small number of parameters to describe the rolling resis-
tance effect.

2.1 Rolling friction phenomena
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Fig. 1 Rolling friction. Two examples in the two-dimensional case.

Although the nonsmooth nature of the sliding friction
is evident in nature, because the friction force is abruptly
clamped to a maximum value as soon as the objects start
sliding, the same sharpness is not evident in the experimen-
tal observation of the rolling friction, because rolling friction
effect increases smoothly as the rolling speeds increases.In



A complementarity-based rolling friction model for rigid contacts 3

fact, resistance to the rolling motion usually takes place be-
cause in the contact area there may be inelastic deformations
of elasto-plastic materials [24]: the final outcome of this hys-
teretic deformation is that the resultant of all pressures is al-
ways placed a bit ahead of the position that it would take if
the parts were not rolling.

Many classical textbooks about applied mechanics [37,
8,26] describe a simplified model for this effect, consider-
ing a rolling wheel of radiusR and expressing the displace-
ment of the contact force by a singlefriction parameterρ,
which has the dimension of length, or by a dimensionless
coefficient of rolling friction fρ = ρ/R. The latter is also
meant to allow an easy comparison with sliding friction:
Given a normal forceN acting on a rolling disc, the hori-
zontal force that is needed to keep it rolling at contant speed
is T = fρN, (see Fig. 1), similar to the Coloumb sliding fric-
tion case,T = fsN, with fs the coefficient of dry sliding fric-
tion. Equivalently, the effect ofT on the disc can be replaced
with a tractive torqueM = TR, that is,M = fρNRor

M = ρN. (4)

This model is highly nonlinear because it states that the
displacement, whose amount isρ regardless of the speed,
has to change direction when the rolling speed changes
sign and must go to zero if there is no rolling speed. This
tristate model cannot be used practically within a general-
purpose numerical simulation framework because scenarios
often occur where a sphere or a disc should come to rest
over a horizontal surface: since numerical roundoff consid-
erations make impossible that the speed will be exactly null,
the speed may actually oscillate around the null value, but
even small oscillations will change the sign of the rolling
speed and, consequently, also the displacement of the con-
tact force will oscillate over the endpoints of the−ρ ,+ρ
interval. The final result will be numerically unstable.

For this reason, we express the rolling friction model (4)
as the following constraint with inequality

||M|| ≤ ρ ||N||, ||ωr ||(ρN−M) = 0, Mωr ≤ 0, (5)

whereωr is the rolling angular velocity, which must be op-
posite to the rolling resistant momentM. The third condition
of Eq. (5) can also be written as〈M,ωr〉=−||M||||ωr ||.

Note that for whatever positive or negative rolling speed,
this model corresponds to the classical rolling-friction model
(4), but for the transition from steady state to moving stateit
changes the displacement in the[−ρ ,ρ ] limit. With this im-
provement, the model can be seen as the counterpart of the
Amontons-Coulomb friction model, because both can con-
sider the static case.

2.2 Three dimensional rolling friction model

For extending the two-dimensional rolling friction model
to the generic case of contact between shapes in three-
dimensional space, we introduce the following assumption

ASSUMPTION A1:The resisting torque is opposite to
the relative (rolling) angular velocity of the two bodies, if
any.

Although Assumption A1 is always verified for 2D
problems, in some three-dimensional problems the resisting
torque can be misaligned with respect to the relative angu-
lar velocity. See Appendix A for a derivation of the relative
angular velocity.

In cases with plane symmetry in the surroundings of
the contact (for instance if the area of contact between two
rolling bodies is an ellipse aligned to the rolling direction
and the material properties are anisothropic), the speed of
deformation of the material is symmetric with respect to the
plane of rotation, thus resulting in a symmetric pressure dis-
tribution at the area of contact, regardless of the type of vis-
cous constitutive law of the material. In this case, Assump-
tion A1 is always verified. This happens, for example, in
case of spheres that are in contact, each with anisothropic
material, or in spheres that are rolling on flat surfaces.

Another special case that has much relevance in engi-
neering applications is the contact between two surfaces that
can be locally approximated as two cylinders with parallel
axes. This happens, for instance, in cam followers and in
rollers over flat surfaces. In these cases, the torque is aligned
to the rolling angular velocity.

In other situations, such as in the case of two generic
ellipsoids, the pressure distribution in the area of contact
(that is elliptical and not necessarily with one of its main
axes aligned to the direction of rolling) generates a normal
reaction whose offset with respect to the plane of contact
might be not aligned to the direction of rolling, thus resulting
in a resisting moment that is not exactly aligned to the vector
of the angular velocity.

Given theith contact, among two bodiesA andB, let ni

be the normal at the contact point, directed toward the exte-
rior of theA body. Letui andwi be two vectors in the contact
plane such thatni ,ui ,wi ∈ R

3 are mutually orthogonal vec-
tors.

The signed gap functionΦ i represents the contact dis-
tance. For each contact that is active (that isΦ i(·) = 0 be-
cause bodies are touching), we introduce the contact forces,
while inactive contacts (Φ i(·)> 0) do not enforce any reac-
tion.

The normal contact force isFi
N = γ̂ i

nni , whereγ̂ i
n ≥ 0 is

the multiplier that represents the modulus of the reaction.
Friction force, if any, is represented by the multipliersγ̂ i

u,
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and γ̂ i
w which lead to the tangential component of the reac-

tion Fi
T = γ̂ i

uui + γ̂ i
wwi .

Because of the inequalitŷγ i
n ≥ 0, the mathematical de-

scription of this unilateral model involves the Signorini com-
plementarity problem [30]:

γ̂ i
n ≥ 0 ⊥ Φ i(·)≥ 0. (6)

We introduce the rolling friction torque using the multi-
pliers τ̂ i

n, τ̂ i
u, andτ̂ i

w, which correspond to a normal compo-
nent of the torqueM i

N = τ̂ i
nni and two tangential components

of the torqueM i
T = τ̂ i

uui + τ̂ i
wwi .

The normal component of the torqueM i
N is responsible

for friction that reacts to spinning around the vertical axis,
while the tangential componentM i

T = τ̂ i
uui + τ̂ i

wwi is the ef-
fect of the classical rolling friction. The model (5) is ex-
tended to the three-dimensional case, the following inequal-
ity holds for nonzero rolling velocity.
∣∣∣∣M i

T

∣∣∣∣≤ ργ̂ i
n

This corresponds to the inequalityρ i γ̂ i
n ≥

√
τ̂ i

u
2+ τ̂ i

w
2.

The rolling velocity vectorω i
T is the part of the relative

angular velocity vectorω i
r that lies on the contact plane, that

is, ω i
T = ω i

r −ni
〈
ω i

rn
i
〉
; the condition that requiresω i

T to
be aligned and opposite toM i

T can be expressed as
〈
M i

T ,ω i
T

〉
=−

∣∣∣∣M i
T

∣∣∣∣ ∣∣∣∣ω i
T

∣∣∣∣ .

Therefore, the full rolling friction model for a contact
with rolling friction parameterρ i is mathematically equiva-
lent to the following constraints:




ρ i γ̂ i
n ≥

√
τ̂ i

u
2+ τ̂ i

w
2

∣∣∣∣ω i
T

∣∣∣∣
(

ρ i γ̂ i
n−

√
τ̂ i

u
2+ τ̂ i

w
2
)
= 0,

〈
M i

T ,ω i
T

〉
=−

∣∣∣∣M i
T

∣∣∣∣ ∣∣∣∣ω i
T

∣∣∣∣ .

(7)

Additionally, one can introduce the spinning friction,
represented by a parameterσi , giving





σ i γ̂ i
n ≥ τ̂ i

n∣∣∣∣ω i
N

∣∣∣∣(σ i γ̂ i
n− τ̂ i

n

)
= 0,〈

M i
N,ω i

N

〉
=−

∣∣∣∣M i
N

∣∣∣∣ ∣∣∣∣ω i
N

∣∣∣∣ .
(8)

Rolling contacts can be either sliding or not sliding.
In the former case there could be also tangential forces
caused by dynamical friction; in the latter case there could
be forces caused by sticking, the consequence of static fric-
tion. Therefore we must introduce the Amontons-Coulomb
friction model to take care of the tangential forces, either
sliding or static.

Within the classic theory of dry friction, the friction co-
efficient µ i limits the ratio between the normal and the tan-
gential force, and the tangential force must have a direction

that is opposite tovi
T , the tangential component of the rela-

tive velocityvi
r , if any, thus requiring





µ i γ̂ i
n ≥

√
γ̂ i
u

2+ γ̂ i
w

2

∣∣∣∣vi
T

∣∣∣∣
(

µ i γ̂ i
n−

√
γ̂ i
u

2+ γ̂ i
w

2
)
= 0,

〈
Fi

T ,v
i
T

〉
=−

∣∣∣∣Fi
T

∣∣∣∣ ∣∣∣∣vi
T

∣∣∣∣ .

(9)

3 The complete DVI model

The system state is defined by the vector of generalized
coordinatesq ∈ R

mq and the vector of generalized speeds
v ∈ R

mv. It might happen thatmq > mv because rotations of
rigid bodies in three-dimensional space are represented with
unimodular quaternionsε ∈ H1 to avoid singularities in the
parametrization ofSO(R,3); anyway it is straightforward to
define a (linear) maṗq = Γ (q)v if q̇ is needed.

We also introduce generalized force fieldsfe(q,v, t)
and gyroscopic forcesfc(q,v) giving a total force field
ft(q,v, t) ∈ R

mv.
The inertial properties of the system are represented by

the mass matrixM(q) ∈ R
mv×mv, assumed positive definite,

usually block-diagonal in the case of rigid bodies only.
Bilateral constraints are introduced through a setB of

scalar constraint equations, assumed differentiable every-
where:

Ψ i(q, t) = 0, i ∈ B. (10)

We introduce∇qΨ i =
[
∂Ψ i/∂q

]T
and∇Ψ iT =∇qΨ iT Γ (q),

to express the constraint (10) at the velocity level after dif-
ferentiation:

dΨ i(q, t)
dt

= ∇Ψ iT v+
∂Ψ i

∂ t
= 0, i ∈ B. (11)

Frictional unilateral contacts define a setA . For each
contacti ∈ A , we introduce the tangent space generators
Di

γu
, Di

γw
, Di

τu
, Di

τw
, Di

τn
∈ R

mv; for details about their for-
mulation, see Appendix B.

Another way to write (7), (8), and (9) is to use the max-
imum dissipation principle, thus leading respectively to the
following constraints on the dynamic equilibrium

(
τ̂ i

u, τ̂ i
w

)
= argminvT

(
Di

τu
τ̂ i

u+Di
τw

τ̂ i
w

)

s.t.(τ̂ i
u, τ̂ i

w) ∈ Z i
r

Z i
r

∆
=

{
(τ̂ i

u, τ̂ i
w)|

√
τ̂ i

u
2
+ τ̂ i

w
2
≤ ρ i γ̂ i

n

} (12)

(
τ̂ i

n

)
= argminvT

(
Di

τn
τ̂ i

n

)

s.t. τ̂ i
n ∈ Z i

s

Z i
s

∆
=

{
τ̂ i

n| |τ̂ i
n| ≤ σ i γ̂ i

n

} (13)

(
γ̂ i
u, γ̂ i

w

)
= argminvT

(
Di

γu
γ̂ i
u+Di

γw
γ̂ i
w

)

s.t.(γ̂ i
u, γ̂ i

w) ∈ Z i
f

Z i
f

∆
=

{
(γ̂ i

u, γ̂ i
w)|

√
γ̂ i
u

2
+ γ̂ i

w
2
≤ µ i γ̂ i

n

} (14)
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Here, Z i
r , Z i

s , and, respectively,Z i
f , are the rolling,

spinning, and respectively, friction cone sections. Alterna-
tively, for the case where the tangential rolling torques isnot
zero, we derive the Fritz John optimality conditions for the
nonlinear program (12),

s=∇τu,τwvT (Dτuτ̂ i
u+Dτw τ̂ i

w

)
+

−λω ∇τu,τw

(
ργ̂ i

n−

√
τ̂ i

u
2
+ τ̂ i

w
2
)
= 0 (15)

ρ i γ̂ i
n−

√
τ̂ i

u
2
+ τ̂ i

w
2
≥ 0, ⊥ λω ≥ 0. (16)

When the tangential rolling torques are zero, the functions
definingZ i

r , are not differentiable so the above derivation
does not hold. However, for purposes of exposing our for-
mulation we will assume the opposite the case, and in later
developments (40) we remove this assumptions by using
cone polar formalisms.

The same derivation can be performed for (12) and (13);
hence the complete model, including inertial effects, force
fields, bilateral constraints, unilateral contacts with friction,
rolling friction, and spinning friction, is the following dif-
ferential variational inequality

q̇ = Γ (q)v

M(q)
dv
dt

= ∑
i∈A

(
γ̂ i
nDi

γn
+ γ̂ i

uDi
γu
+ γ̂ i

wDi
γw
+

+τ̂ i
nDi

τn
+ τ̂ i

uDi
τu
+ τ̂ i

wDi
τw

)
+

+ ∑
i∈B

γ̂ i
B∇Ψ i + ft(t,q,v)

i ∈ B : Ψ i(q, t) = 0
i ∈ A : γ̂ i

n ≥ 0 ⊥ Φ i(q)≥ 0
∇τu,τwvT

(
Dτu τ̂ i

u+Dτw τ̂ i
w

)
+

−λ i
ω ∇τu,τw

(
ρ i γ̂ i

n−

√
τ̂ i

u
2
+ τ̂ i

w
2
)
= 0

ρ i γ̂ i
n−

√
τ̂ i

u
2
+ τ̂ i

w
2
≥ 0, ⊥ λ i

ω ≥ 0
∇γu,γwvT

(
Dγu γ̂ i

u+Dγw γ̂ i
w

)
+

−λ i
v∇γu,γw

(
µ i γ̂ i

n−

√
γ̂ i
u

2+ γ̂ i
w

2
)
= 0

µ i γ̂ i
n−

√
γ̂ i
u

2
+ γ̂ i

w
2
≥ 0, ⊥ λ i

v ≥ 0
∇τnvT

(
Dτnτ̂ i

n

)
+

−λ i
τ ∇τn

(
σ i γ̂ i

n−|τ̂ i
n|
)
= 0

µ i γ̂ i
n−|τ̂ i

n| ≥ 0, ⊥ λ i
τ ≥ 0

(17)

The former DVI can be discretized in time. Using a time
steph, posingγ = hγ̂ , and adopting the exponential map
Λ(·) described in [33] to allow direct integration on the Lie

group, we have the following problem.

q(l+1) = Λ(q(l),v(l+1),h)

Mv(l+1) = ∑
i∈A

(
γ i
nDi

γn
+ γ i

uDi
γu
+ γ i

wDi
γw
+

+τ i
nDi

τn
+ τ i

uDi
τu
+ τ i

wDi
τw

)
+

+ ∑
i∈B

γ i
B∇Ψ i +hft(t,q,v)+Mv(l)

i ∈ B :
1
h

Ψ i(q(l))+∇Ψ iT v(l+1)+
∂Ψ i

∂ t
= 0

i ∈ A : γ i
n ≥ 0 ⊥ 1

hΦ i(q(l))+∇Φ iT v(l+1) ≥ 0
∇τu,τwvT

(
Dτuτ i

u+Dτwτ i
w

)
+

−λ i
ω ∇τu,τw

(
ρ iγ i

n−

√
τ i

u
2+ τ i

w
2
)
= 0

ρ iγ i
n−

√
τ i

u
2+ τ i

w
2 ≥ 0, ⊥ λ i

ω ≥ 0
∇γu,γwvT

(
Dγuγ i

u+Dγwγ i
w

)
+

−λ i
v∇γu,γw

(
µ iγ i

n−

√
γ i
u

2+ γ i
w

2
)
= 0

µ iγ i
n−

√
γ i
u

2+ γ i
w

2 ≥ 0, ⊥ λ i
v ≥ 0

∇τnvT
(
Dτnτ i

n

)
+

−λ i
τ ∇τn

(
σ iγ i

n−|τ i
n|
)
= 0

µ iγ i
n−|τ i

n| ≥ 0, ⊥ λ i
τ ≥ 0

(18)

This is a mixed nonlinear complementarity problem,
whose solution is not guaranteed to exist. Indeed, most exis-
tence results require monotonicity of the mapping defining
the complementarity problem. In turn, this implies convexity
of the solution set of the nonlinear complementarity prob-
lem [10]. Unfortunately, not even the weaker condition of
the convexity of the solution set can be guaranteed. Indeed,
it has been already shown that, for the subcase of a linear
complementarity problem (LCP) corresponding to a simple
pyramidal frictional model, the solution set may be noncon-
vex [1]. This situation can occur only if the mapping of the
LCP is nonmonotone, which in the linear case implies that
its matrix is not positive semi-definite.

4 Casting to a convex solvable problem

In the following we show that, under mild conditions, the
original problem can be relaxed as a monotone cone com-
plementarity problem (CCP) that guarantees existence of
the solution and convexity of the solution set. The prob-
lem is equivalent to a convex optimization problem, a feasi-
ble quadratic programming problem (QP) with conical con-
straints. We note that while one cannot guarantee uniqueness
of the solution of the CCP (indeed, lack of uniqueness of
the forces is known to appear even in frictionless cases that
are linear and convex problems), one can guarantee under
some mild assumptions uniqueness of the velocity solution
[3]. The latter condition is sufficient for a predictive time-
stepping scheme to exist.
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Assume that for each contacti ∈A we define the vector
of wrench reactions

γ i
A =

{
γ i
n,γ i

u,γ i
w,τ i

n,τ i
u,τ i

w

}T

and the corresponding twist of local linear and angular
velocities in the contact point, plus the stabilization term
1
hΦ(q), that is,

ui
A =

{
∇Φ i,Tv+ 1

hΦ i ,Di,T
γu v,Di,T

γv v,Di,T
τn v,Di,T

τu v,Di,T
τw v

}T
.

In the rest of this section we omit thei indexes for compact-
ness.

We differentiate the Fritz John optimality conditions
(15) obtaining, for the rolling friction part,

vTDτu = λω τu
1√

τ2
u + τ2

w

(19)

vTDτw = λω τw
1√

τ2
u + τ2

w

. (20)

Then,

λω =
√
(DT

τu
v)2+(DT

τw
v)2. (21)

Note that for the sliding friction one gets similar results,
vTDγu = λvγu1/

√
γ2
u + γ2

w and vTDγw = λvγw1/
√

γ2
u + γ2

w,

with λv =
√
(DT

γu
v)2+(DT

γw
v)2; whereas for the spinning

friction vTDτn = λτ τn/|τn|, with λτ = DT
τn

v|τn|/τn.
Now, the inner product for the complementarity in the

optimality condition requires that

λω

(
ργn−

√
τ2

u + τ2
w

)
= 0

λω

√
τ2

u + τ2
w = λω ργn. (22)

Similarly one can derive, for sliding and spinning,

λv

√
γ2
u + γ2

w = λvµγn (23)

λτ |τn|= λτ σγn. (24)

If we assume the orthogonality ofγA anduA , we have

〈γA ,uA 〉=γn(∇ΦTv+ 1
hΦ)+ γuDT

γu
v+ γwDT

γw
v+

+ τnDT
τn

v+ τuDT
τu

v+ τwDT
τw

v = 0. (25)

By adding a relaxation termAr for the normal velocity,
the orthogonality condition for unilateral contact in the dis-
cretized DVI (18) becomes

γn ≥ 0 ⊥ 1
hΦ +∇ΦTv+Ar ≥ 0.

Since complementarity implies nullity of inner product, we
then have

γn
(

1
hΦ +∇ΦTv

)
=−γnAr ≥ 0. (26)

By exploiting (26), (19), (20), and so forth, recalling that
x2/|x|= |x|, with simple algebraic manipulation, we rewrite
(25) as

〈γA ,uA 〉=− γnAr +
γ2
uλv√

γ2
u + γ2

w

+
γ2
wλv√

γ2
u + γ2

w

+

+
τ2

uλω√
τ2

u + τ2
w

+
τ2

wλω√
τ2

u + τ2
w

+
τ2

nλτ
|τn|

= 0

γnAr =λv

√
γ2
u + γ2

w+λω

√
τ2

u + τ2
w+λτ |τn|. (27)

By substituting (22), (23), and (24) in (27), and by simplify-
ing γn, we have that the relaxation term that allows orthogo-
nality of γ ’s andu’s is, for theith contacti ∈ A ,

Ai
r =µ i

√
(Di

γu
v)2+(Di

γw
v)2+

+ρ i
√

(Di
τu

v)2+(Di
τw

v)2+σ i |Di
τn

v|. (28)

The introduction of theAi
r term has the drawback of

modifying the contact constraint; from a practical point of
view there is the side effect that the gap between objects in-
crease with the sliding speed instead of remaining equal to
zero; this effect has been discussed in [33] for the simple
case of sliding friction. Now, introducing also rolling and
spinning friction, one can see from Eq. (28) that rotational

motion increases the gap (the
√
(Di

τu
v)2+(Di

τw
v)2 term is

also the norm ofω i
T ), and that the increase is always di-

rected outward. This is the price for having convexified the
original problem. In many situations this can be acceptable,
indeed one can demonstrate that at steady state, i.e. when
∇Φ iTv = 0 in (26), the separation gapΦ i decreases with
low speeds, lowµ , ρ, σ , and small timesteps.

We note that if we plan to use rolling friction to simulate
granular material, the above mentioned side effect of the
relaxation leads to a dilatancy effect that really happens in
physical world.

Aiming at a generic compact notation, we now introduce
bi

A
∈ R

6 = {1
hΦ i ,0,0,0,0,0}T , and we build the following

aggregate vectorsbA ∈ R
6nA , γA ∈ R

6nA , uA ∈ R
6nA :

bA =
{

b1,T
A

,b2,T
A

, . . . ,bnA ,T
A

}T
,

γA =
{

γ1,T
A

,γ2,T
A

, . . . ,γnA ,T
A

}T
,

uA =
{

u1T

A
,u2T

A
, . . . ,unA ,T

A

}T
.

(29)

For each contact we can define a matrix with six columns,

Di =
[
∇Φ i |Di

γu
|Di

γw
|Di

τn
|Di

τu
|Di

τw

]
, (30)

and a six-dimensional cone that defines the set of admissible
reactions in the sliding, rolling, spinning friction contact:

Z
i =



γ ∈ R

6

∣∣∣∣∣∣





µ iγn ≥
√

γ2
u + γ2

w,

ρ iγn ≥
√

τ2
u + τ2

w,

σ iγn ≥ |τn|







 . (31)
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Similarly, for bilateral constraints, we havebB ∈ R
nB ,

andγB ∈ R
nB :

bB =
{

1
hΨ 1+ ∂Ψ1

∂ t , 1
hΨ 2+ ∂Ψ2

∂ t , . . . , 1
hΨnB + ∂ΨnB

∂ t

}T

γB =
{

γ1
B
,γ2

B
, . . . ,γnB

B

}T

uB =
{

u1
B
,u2

B
, . . . ,unB

B

}T
.

(32)

The complete aggregate vectors and matrices of the en-
tire system are

γS =
{

γT
A ,γT

B

}T
, uS =

{
uT

A ,uT
B

}T
, bS =

{
bT

A ,bT
B

}T
,

(33)

DS =
[
Di1|Di2| . . . |DinA |∇Ψ1|∇Ψ2| . . . |∇Ψ nB

]
. (34)

Moreover we define the product of all the sliding and
rolling friction cones and the possible values of reactionsin
bilateral constraints as

ϒ =
(
×i∈A Z

i)× (×i∈BR) (35)

and its polar (note thatR◦ = {0}):

ϒ ◦ =
(
×i∈A Z

i◦
)
× (×i∈B{0}) . (36)

Now we proceed with a simplification by introducing

k̃(l)
= M(l)v(l)+hft(t(l),q(l),v(l)). (37)

From the relaxed version of (18) one can see thatuS =

NγS + r , where

N = DT
S M(l)−1

DS (38)

r = DT
S M(l)−1

k̃ +bS . (39)

The entire system is described by the following CCP:

(NγS + r) ∈ −ϒ ◦ ⊥ γS ∈ϒ . (40)

The CCP (40) is also equivalent to a variational inequal-
ity as expressed in the VI of Eq (1), namely

γS ∈ϒ : 〈NγS + r ,y− γS 〉 ≥ 0 ∀y ∈ϒ . (41)

Several theoretical results for (41) can be obtained by
noting that it is related to the following optimization prob-
lem.

min
γS ∈ϒ

1
2

γT
S NγS + rTγS (42)

Theorem 1 Consider the variational inequality(41) and
the optimization problem(42). Then the following state-
ments hold:

i) If (42) has a solution, then that solution satisfies the
variational inequality(41). Conversely, any solution of
(41) is a solution of(42).

ii) Either (42)has a solution, or there exists̃γS such that
DS γ̃S = 0.

iii) If (42) has two solutionsγ1
S

andγ2
S

, then they must
satisfy DS γ1

S
= DS γ2

S
.

Proof If (42) has a solution, then since the constraintsϒ
are convex, they must satisfy the Kuhn-Tucker conditions,
which are simply the statement of (41). Conversely, because
of the convexity of the coneϒ and of the objective function,
any Kuhn-Tucker solution is a global solution, which proves
Part (i).

For Part (ii), if the objective function of (42) is bounded
below over the convex setϒ , it follows that the problem (42)
must have a solution. Assume that this is not the case, that is,
that there exists a sequenceγn

S
∈ϒ , n= 0,1,2, . . . such that

1
2γnT

S
Nγn

S
+ rTγn

S
→−∞. Because of the continuity of the

objective function, such a sequence must satisfy
∣∣∣∣γn

S

∣∣∣∣→∞
(otherwise the objective function would stay bounded). In
particular, this implies that

1
2

γnT
S Nγn

S + rTγn
S ≤ 0;∀n≥ n0 (43)

for some integern0. Define the scaled vectorγ̃n
S =

γn
S

||γn
S ||

∈

ϒ . Since the scaled vector sequence is in the unit ball, which
is compact, it must have a limit point, which we denote by
γ̃∗S . We assume, without loss of generality, that the entire

sequence converges to this point. Dividing (43) by
∣∣∣∣γn

S

∣∣∣∣2
and taking the limit, we have that the second term goes to 0,
and we obtain

1
2

γ∗T
S Nγ∗S .≤ 0

Using the expression forN, (38), and the fact that the mass
matrix is positive definite, this implies thatDS γ̃∗S = 0,
which in turn proves Part (ii) of the theorem.

For Part (iii), assume that there are two solutions of the
optimization problem (42),γ1

S
and γ2

S
. Then, by the fact

that the objective function is convex and that the constraints
are convex, for anyt ∈ [0,1], we have thatγ1

S
+ t(γ2

S
− γ1)

is also a solution of (42). That is, the objective function value

(
γ1

S + t(γ2
S − γ1)

)T
N
(
γ1

S + t(γ2
S − γ1)

)
+

+rT (γ1
S + t(γ2

S − γ1)
)

is constant int. This function is a quadratic, and this can
occur only if the coefficient int2 is 0, that is,

(
γ2

S − γ1)T
N
(
γ2

S − γ1)= 0.

Again using the expression forN, (38), and the fact that the
mass matrix is positive definite, this implies thatDS (γ̃1

S −

γ̃1
S ) = 0, which in turn proves Part (iii) of the theorem. The

proof of the theorem is complete. �
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After the dual variablesγS have been obtained from the
VI (41), one can easily compute also the primal variables
with the affine mapping:

v(l+1) = M(l)−1
DS γS +M(l)−1

k̃. (44)

In what sense the problem has a unique solution now
revolves around the results of Theorem 1. The key assump-
tion that we make is that the friction cone of our problem is
pointed, that is,

γS ∈ϒ ,DS γS = 0⇒ γS = 0. (45)

Note thatϒ is only a set of multipliers (that is, the contact
constraint forces in the coordinates attached to the contact,
not the bodies) that is mapped into friction forces (and the
friction cone, that is, in general coordinate) by means of the
mappingDS γS , and thus (45) is a statement about fric-
tion forces. Moreover, we use here an algebraic definition
of pointedness, although it does have a geometrical inter-
pretation in the all-contact case: the friction coneDSϒ does
not contain a nontrivial linear space, and thus its origin is
“pointed”. The reason we use the algebraic formulation is
that it applies for cases where joint constraints are also in-
cluded and where the constraint set is algebraically pointed,
but not geometrically. More importantly the algebraic defi-
nition is also intuitive from a mechanics perspective: there
are no contact forces that are valid from a constraint per-
spective but that produce a zero total force. In other words,
the multibody system cannot get stuck through its internal
forces, a configuration known to lead to virtually unpre-
dictable behavior. For one contact, this condition immedi-
ately holds when we have rolling, sliding, and spinning fric-
tion; for more contacts, whether this holds depends on the
configuration.

With this definition we have the following result, which
elucidates the existence and uniqueness of a solution.

Theorem 2 Assume that the friction cone attached to the
CCP (or VI) (41) is pointed in the sense of definition(45).
Then

i) The VI (41)has a solution.
ii) Any two solutions of the VI result in the same velocity
vector(44).

Proof If the friction cone is pointed, then, by Theorem 1 (ii),
the optimization problem (42) must have a solution. Then,
by Theorem 1, that solution is also a solution of the vari-
ational inequality (41), which proves the claim (i). For the
second part, assume that the VI (41) has two solutions,γ1

S
,

andγ2
S

. From Theorem 1 (i), these are also solutions of the
optimization problem (42). From Theorem 1 (ii), these solu-
tions satisfy

DS γ1
S = DS γ2

S .

Looking at (44) and how the velocity solutions are computed
from the solutions of (42), one can see that this relation-
ship implies that the velocities computed from either are the
same. The proof of (ii) and the theorem is complete. �

With this theorem, it follows that under the condition
of pointedness of the friction cone, the VI (41) is well posed
and its solution is unique in velocities. The latter condition is
sufficient to result in a predictive simulation, since it results
in uniqueness of the trajectory. We also point out that in the
case of friction it is unreasonable to expect that the forces
are unique, as can be immediately contemplated from the
example of a block resting on a table with friction, which
has multiple frictional solutions.

5 Numerical solution scheme

Obtaining the unknownγS dual variables from the VI of
Eq. (41) is the most complex and time-consuming task in
the simulation process. In fact, the solution of large VIs is
currently a debated and actively researched topic in applied
mathematics, and there exist no unique “best” algorithms to
approach their solution.

As a comparison, the much easier linear problems that
often arise in the simulation of classical ODEs and DAEs
belong to the so-called polynomialP-class because they
can be solved in polynomial timeO(nc), if n represents
the size of the problem in our case, the number of con-
straints on the system. On the other hand, VIs (as well as
QPs, LCPs, and CCPs as special cases) are highly nonlin-
ear problems, whose general complexity class is said to be
nondeterministic-polynomialNP-hard, which often means
an intractable growth of computational time for even moder-
ate sizes of the domain [4]. Only special subcases of VIs can
exploit the more friendly and tractableP class, such as the
monotone VIs that we are dealing with. Exact methods for
their solution, although runing with polynomial timeO(nc),
might experience highc; thus the solution is still difficult,
and often it is necessary to accept truncation to approximate
solutions [22].

In [33] we presented a fixed-point iteration that can solve
the CCP problem with Amontons-Coulomb friction only.
Adding the set-valued rolling and spinning friction model
presented in this paper, one can develop a new flavour of
that iterative scheme, with minor modifications. Omitting
the details, we note that the method iterates the following
function, which is convergent for a proper choice ofω ∈R

+,
λ ∈ (0,1] andK:

γ r+1
S

= λΠϒ
(
γ r

S
−ωBr

(
Nγ r

S
+ r +Kr

(
γ r+1

S
− γ r

S

)))
+

+(1−λ )γ r
S
,

r = 0,1,2, . . . .

(46)
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TheΠϒ operator is a projection ontoϒ , so thatΠϒ (γ) =
argminζ∈ϒ ||γ − ζ ||. Given the separable cone structure of
Πϒ as defined in Eq. (35), the computation ofΠϒ (γ) can
be split intonA projectionsΠ i

Z
(γ i) and intonB identities

(no projections are required for the bilateral constraints).
The originalΠ i

Z
(γ i) projection discussed in [33] operates

only on the three values of the reactions that must obey
the Amontons-Coulomb friction. In the advanced case, how-
ever, that includes also rolling friction and spinning fric-
tion one must map the six-dimensional wrench onto the six-
dimensional coneZ defined in Eq. (31), soΠ i

Z
(γ i) : R6 →

R
6. See Appendix C for details about this projection.

Given the requirement of solving a VI for each timestep,
the DVI approach appears to be less competitive than the
classic DEM concept of regularizing nonsmooth phenomena
via smooth but stiff force fields, because DEMs lead to un-
coupled equations of motion of ODE type with basic linear
O(nb) complexity for each timestep. However, our DVI set-
ting permits large timesteps because it does not suffer from
the stability issues implied by stiff forces in DEMs, so the
increased workload for each timestep is paid back by fewer
timesteps being required [32].

We remark that a parallel version of this rolling and spin-
ning friction model can be easily implemented on parallel
hardware of GPU type, as described in [34], and on hybrid
high-performance computers [21].

6 Examples

6.1 Comparison against analytical solution

A simple validation against the analytical solution for a
rolling disk is presented here. We consider a rolling disk
with radiusR = 1 m, massM = 10 kg, moment of iner-
tia J = 4 kgm2, initial positionx|t=0 = 0 m initial horizon-
tal speed on x axisvx|t=0 = 1 m/s, initial angular veloc-
ity ω|t=0 = −1 rad/s. We use a rolling friction parameter
ρ = 0.02 m and a sliding/static friction coefficientµ = 0.9.
The gravity acceleration isgy =−9.8 m/s2

Figure 2 plots the motion of the disk which rolls until
it comes to a rest because of the deceleration caused by the
rolling friction. Figure 3 shows that the deceleration is con-
stant (linear speed) in analytical theory, which uses the con-
stant resistant torqueTr = M ·gy ·ρ ; a similar behavior can
be seen in the results of the DVI model.

6.2 Simulation of a linear guideway

Linear guideways based on recirculating ball bearings repre-
sent an advanced technology for constraining linear motion.
They avoid the problem of sliding friction between the trans-
lating parts by interposing rows of rolling spheres that can

0 1 2 3 4 5 6
0
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2
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3
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x 
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]
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analytic

Fig. 2 Motion of the rolling disk: comparison with classic theory.

0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

t [s]

v x [m
/s

]

 

 
DVI
analytic

Fig. 3 Velocity of the rolling disk: comparison with classic theory.

recirculate back in enclosed channels, like tracks in a tank.
In this section we present the simulation of the linear system
depicted in Fig. 4, as an example of a device that involves
many contacts with rolling friction. The model is based on a
35 mm wide rail, with four rows of recirculating balls, each
steel ball having a diameter of 2Rb = 6.4 mm. Nine balls, on
average, provide the contact in each row, and the four rows
define four contact directions with 45◦ orientation, as shown
in Fig. 5.

Although this type of guideway avoids sliding friction,
a small resistance remains, caused by rolling friction, as
shown in the scheme of Figure 6. This effect can be eas-
ily simulated by using the proposed complemetarity-based
approach to rolling friction: we modeled the guideway in a
3D CAD software, we saved the parts using a custom trans-
lation software, we imported the file in our software, and we
simulated it.

We assumed that the contact between the spheres and the
raceways is always aligned to the 45◦ direction, so we intro-
duced eight stretched boxes as collision shapes, as shown in
Fig. 7; in this way the collision algorithm of our software can
automatically compute the contact points between the balls
and the raceways. In other types of guideways, the raceways
are shaped like gothic arcs: these can be modeled as well,
but such nodeling would not add much to the discussion.

No significant side contact occurs between rolling balls
(in some models plastic spacers exclude this posssibility),
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Recirculating balls

Upper contact balls

Lower contact balls

Sliding block

and scraper 

Support flange

Seals 

Rail

Fig. 4 The simulated linear guideway, with the scheme of the recircu-
lating balls.

N

N' N''

Fig. 5 Section of the linear guideway, showing the contact between
balls and grooves.

   ρ   

ω

v

R R

n

n+1Rn n+2

O

Fig. 6 Schematic representation of the forces acting on the rolling
balls.

and we did not consider static preload, although it could be
simulated as well.

Since the system has many more contact constraints
than needed, the indeterminacy is solved by introducing a
Tikhonov regularization: from a numerical point of view this
means adding a nonzero diagonalC to theN matrix of Eq.
38, that is,NTyk = N+C. From a mechanical point of view,
the Tikhonov regularization means that we introduce com-

  

Rail collision shapes

Block collision shapes

Balls

Contacts

Fig. 7 Collision primitives used in the simulation.
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Fig. 8 Resisting forceFx for different values of rolling friction pa-
rameterρ , with and without the effect of seal friction (case of load
Fy = 490N)

pliance in contacts; in detail, we generateC from the in-
verses of the stiffness values in contact points, as computed
by the Hertz-Mindlin theory.

The manufacturer of the guideway provides the follow-
ing formula for estimating the resistance to horizontal slid-
ing at low speeds:Fx =−sign(vx)(ζFy+S), whereFy is the
normal load,ζ is typically about 0.005, andS is the force
caused by the sliding friction of seals and scrapers, in our
caseS= 5.3N. Such friction is introduced in our model
by using a convex box-constraint of the type−S≤ γ̂S ≤ S,
whose effect on the DVI is similar to the already discussed,
and more complex, contact constraints. The effect of theζFy

term comes from the simulation of the many rolling con-
tacts, each with a rolling friction parameterρ = ζRb. Results
from the simulations show precise agreement with the above
formula, as shown in Fig. 8. For zero speed, the model is
able to describe also the sticking effect that, although mod-
est, can be measured on this class of devices.

6.3 Application to the simulation of granular materials

The mechanics of granular matter has became a fertile re-
search topic only recently, because of the vast computational
resources that are required. One of the fields that would ben-
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efit from advances in this area is pharmaceutical engineer-
ing, where multibody dynamics could be used to study pro-
cesses that involve powders: milling, blending, granulation,
compression, and coating [17]

In the popular discrete element method (DEM), the bulk
material is discretized in many particles with unilateral fric-
tional contacts [7]. Various micromechanical contact models
are available in the DEM field in order to define the interac-
tion between the particles; in most cases, the nonsmooth na-
ture of contact means that those models always produce stiff
contact forces, and hence, that short integration timesteps
are needed.

The need of rolling friction in granular simulations
is motivated by experimental evidence; for example [23]
shows that rolling resistance can have marked influence on
the mechanics of particle assemblies at microscales; in some
cases, its effect can be more relevant than interparticle slid-
ing friction [36]. Rolling friction has been shown to affect
only marginally the elastic properties of granular assem-
blies, but other collective phenomena such as shear resis-
tance and dilatancy are significantly affected [5].

In some cases the simple inhibition of particle rotations
in DEM algorithms can improve the solution with respect
to the case of free frictionless rotation [6]. During the past
few years, more sophisticated models of rolling friction have
been proposed for interparticle contacts, for example in [14].
Given the difficulty of tuning the parameters of complex
models, approaches based on few parameters such as the
approach of [15] are welcome.

To some extent, the macroscopic effect of rolling friction
in granular media is simular to the effect of dealing with
nonspherical particles [19].

The collective behavior of particles with irregular and
faceted shapes is different from the behavior of spherical
particles, even if granular assemblies share the same granu-
lometry and friction; in general, oddly shaped particles tend
to generate less deformable assemblies when compared with
spherical particles of equal size [35]. Of course, a straight-
forward approach could take into account the simulation of
all the detailed shapes, but this would lead to high simulation
times, both because there will be multiple contacts between
pairs of particles and because the collision detection phase
would require more RAM and CPU time to process those
contacts.

The rolling friction model discussed above can be used
for simulating the granular materials such as in the exam-
ple of Fig. 9. If one tries to simulate the pile of gravel with
plain rigid spheres, the angle of repose of the cone will be
small when compared with the real case, because the lack of
irregularities on the simulated spheres lead to a loose, granu-
lar flow. Yet, by introducing increasing values of rolling and
spinning friction in a model with simple spheres, the stack-
ing is less loose and we can obtain the same results that one

Fig. 9 A typical pile of gravel and a conveyor, in a plant for separating
raw materials.

Fig. 10 Simulated pile of gravel, without rolling friction. Case with
ρ = 0 m,σ = 0 m, after 13 s of simulation.

can achieve by introducing particles with odd shapes (which
would require much larger computational resources).

We simulated the free stacking of 10,000 particles, each
with a diameterDs = 45 mm, falling from an height of 1 m
into a 2 m× 2 m flat container. The density of the parti-
cles isδ = 2′028 kg/m2; the sliding friction coefficient is
µ = 0.6, also used as static friction coefficient. The flow is
about 800 particles/s, and gravity isg = −9.81 m/s2. We
simulated this system for increasing values of rolling and
spinning friction. Specifically, we tested values of rolling
friction parameter in the 0÷ 0.01 m range; for simplicity
we made the spinning friction parameter equal to the rolling
one in all tests. The timestep wash= 0.005 s, and the simu-
lated time 15 s. As shown in Fig. 10, the case without rolling
friction produces an almost flat stack, whereas Fig. 11 shows
that the proposed rolling friction model is able to produce a
steep cone typical of particles of irregular shapes yet featur-
ing the benefit of using simple spheres.
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Fig. 11 Simulated pile of gravel, with rolling frictionρ = 0.01 m and
spinning frictionσ = 0.01 m.
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Fig. 12 Angle of repose for different values of rolling friction.

7 Conclusion

We presented a rolling friction model that fits in the context
of DVIs, and we discussed theoretical issues about the ex-
istence and uniqueness of the solution. Details about an im-
plementation in the form of a convex cone-complementarity
problem are given, showing that the approach features a rel-
atively simple algorithmic complexity yet provides stable,
fast, and robust solutions. These features, coupled with the
ease of use, make the method a good canditate for enriching
the capabilities of DVI simulations of rigid contacts, espe-
cially when fast, real-time performance is required or when
a large number of parts is involved, such as in granular flows.
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Fig. 13 Angle of reposeψ with sameµ = 0.6, for increasing values of
ρ.

Appendix A: Kinematics of rolling in threedimensional
space

Let ω(W)
A,W andω(W)

B,W denote the angular velocities of two bod-
iesA andB, relative to the absolute reference frameW and
expressed in the basis of the frame(W). We assume A and
B to be rigid or with negligible deformations. Introducing
the rotation matrixRA,W ∈ SO(R,3) that represents the ro-

tation of A respect toW, we haveω(W)
A,W = RA,Wω(A)

A,W and

ω(W)
B,W = RB,Wω(A)

B,W.
Let the unimodular quaternionεA,W ∈ H1 represent the

rotation of the frameA respect to absolute frameW. We
recall that, for unimodular quaternions, the inverseε−1 is
also the conjugateε∗. We also recall that it is possible to
computeR from ε and viceversa.

Thanks to a property of quaternion algebra [13] the rel-
ative rotation of two references is

εB,A = ε∗A,WεB,W.

By performing differentiation respect to time, we get

ε̇B,A = ε̇∗A,WεB,W + ε∗A,Wε̇B,W.

From the result in [27], the quaternion derivative can be
transformed in angular velocity, usingpurequaternions:

[0,ω(A)
BA ] = 2ε̇B,Aε∗B,A (47)

= 2ε̇∗A,WεB,W
(
ε∗A,WεB,W

)∗
+2ε∗A,Wε̇B,W

(
ε∗A,WεB,W

)∗
.

(48)

Since(ε∗1ε2)
∗ = ε∗2ε1, and remembering thatεε∗ = 1,

we can develop Eq. (48) into

[0,ω(A)
BA ] = 2ε̇∗A,WεA,W +2ε∗A,Wε̇B,Wε∗B,WεA,W. (49)

The productε̇B,Wε∗B,W in the second term of the suma-

tion can be replaced with the pure quaternion1
2[0,ω

(W)
B,W]
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using Eq. (47). Also, the first term can be premultiplied
by ε∗A,WεA,W = 1, becoming 2ε∗A,WεA,Wε̇∗A,WεA,W; here the
product between the second and third quaternion can be re-

placed with the pure quaternion12[0,ω
(W)
A,W]∗, again using Eq.

(47). Thus we have

[0,ω(A)
BA ] = ε∗A,W[0,ω(W)

A,W]∗εA,W + ε∗A,W[0,ω(W)
B,W]εA,W. (50)

A rotation in 3D space of the vector part of a pure
quaternion can be obtained with unitary quaternions, that is,
[0,v(W)] = εA,W[0,v(A)]ε∗A,W.

Hence, recalling that[0,ω(W)
A,W]∗ = −[0,ω(W)

A,W] by the
property of conjugate quaternions, we can rewrite Eq. (50)
and obtain the expected result for relative angular velocity
ω r :

[0,ω(A)
BA ] =−[0,ω(A)

A,W]+ [0,ω(A)
B,W]

ω(A)
BA = ω(A)

B,W −ω(A)
A,W. (51)

Appendix B: Formulation of D vectors

We assume that the vector of generalized velocitiesv con-
tains the speeds of the centers of mass of the bodiesẋ(W), ex-
pressed in absolute coordinates(W) and the angular veloc-
ities ω(i) expressed in the local coordinates of theith body,

asv =
[
ẋ(W)

1 ,ω(1)
1 , ẋ(W)

2 ,ω(2)
2 , . . . ,

]T
.

Given a contact between a pair of two rigid bodiesA
and B, we define the positions of the two contact points
with respect to the centers of mass, expressed in the coor-

dinate systems of the two bodies, ass(A)A ands(B)B . The ab-
solute rotations of the coordinate systems of the bodies are

R(W)
A ,R(W)

B ∈ SO(R,3) and the absolute rotation of the con-

tact plane isR(W)
P ∈ SO(R,3) = [n,u,w]. Thus, the vectors

Dγn, Dγu, Dγw can be computed asDγ =
[
Dγn,Dγu,Dγw

]
∈

R
3×mv,

DT
γ =

[
0, . . . R(W)T

P , −R(W)T

P R(W)
A s̃(A)A , . . . ,

0, . . . −RT
P, R(W)T

P R(W)
B s̃(B)B , . . . , 0

]
, (52)

wheres̃ is the skew symmetric matrix such thats̃x = s∧x.
Similarly, recalling the result in Eq.(51), one can com-

pute the vectorsDτn, Dτu, Dτw as Dτ = [Dτn,Dτu,Dτw] ∈

R
3×mv:

DT
τ =

[
0, . . . 0, R(W)T

P R(W)
A , . . . ,

0, . . . 0, −R(W)T

P R(W)
B , . . . ,0

]
. (53)

We remark that, because of the extreme sparsity of (52)
and (53), only the following four 3×6 matrices need to be

stored per each contact

DT
γ ,A =

[
R(W)T

P , −R(W)T

P R(W)
A s̃(A)A

]
(54)

DT
γ ,B =

[
−R(W)T

P , R(W)T

P R(W)
B s̃(B)B

]
(55)

DT
τ ,A =

[
0, R(W)T

P R(W)
A

]
(56)

DT
τ ,B =

[
0, −R(W)T

P R(W)
B

]
(57)

Here we consideredB as the reference body: otherwise,
if A were the reference for contact coordinates, signs should
be swapped in all terms in Eqs. (52-57).

Appendix C: Computing projections on intersections of
cones

We describe the procedure to compute the euclidean projec-
tion of a pointx on an intersection of circular cones that have
one common component (in the case studied here, that com-
ponent is the normal force). We assume that a generic point
x is structured as follows:

x= (x0, l1, l2, . . . lm), x0 ∈ R, l i ∈ R
ni , (58)

and that themcircular cones are second-order cones defined
by

x∈ Ki ⇔ µix0 ≥

√
||l i ||

2,

whereµi > 0, i = 1,2, . . . ,m. We are interested in computing
the projection of a vector x on∩Ki , that is,

x̃= ∏
∩Ki

(x)⇔ ||x− x̃||2 = min
y∈∩Ki

||x−y||2 .

For example, in the case treated in this work, we are inter-
ested in simultaneous modeling of sliding, rolling, and spin-
ning friction in three dimensional configurations. That is,we
have three cones,m= 3 andx is a six-dimensional vector,
x = (γn,γu,γw,τu,τw,τn). The mapping (58) is the follow-
ing: x0 = γn, l1 = (γu,γw), l2 = (τu,τw), l3 = τn. The friction
coefficients areµ1=µ , µ2 = ρ , µ3 = σ .

The crucial observation that simplifies the computation
of the projection is that the componentl̃ i of the projection ˜x
must be collinear withl i . Indeed, if this is not the case, then
rotating l̃ i over l i will preserve feasibility but will necessar-
ily reduce||x− x̃||, a contradiction. Therefore, there existsti
such thatl̃ i = ti l i . The optimization that defines the projec-
tion then becomes

min
y0,t1,t2,...,tm

(y0−x0)
2+

m

∑
i=1

(
ti

µiy0

||l i ||
−1

)2

||l i ||
2 ,

0≤ ti ≤ 1, i = 1,2, . . . ,m.
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We have normalized the component ofy in terms ofy0 to
allow for the range ofti to be the same. For a giveny0, the
optimal ti , which we denote byti(y0), is easy to compute.
Indeed we obtain the following

ti(y0) =

{
||l i ||
µiy0

||l i ||
µiy0

≤ 1

1 ||l i ||
µiy0

> 1
⇒

⇒ ti(y0)
µiy0

||l i ||
−1=

{
0 ||l i ||

µiy0
≤ 1

µiy0
||l i ||

−1 ||l i ||
µiy0

> 1

Substitutingti for the optimal valuesti(y0) in the optimiza-
tion problem, we obtain that the problem is equivalent to

min
y0

ψ(y0) :=(y0−x0)
2+

m

∑
i=1

I[
y0<

||li ||
µi

](y0)

(
µiy0

||l i ||
−1

)2

||l i ||
2 .

Here I is the indicator function of a set. It is immediately
apparent that this function is piecewise quadratic andthat it
is convex. Indeed, convexity follows from the fact that each
term function is convex, the first term as a quadratic, and the
other terms as their graphs are the union of a parabola with
a flat line.

To find its optimum, we can do the following.

1. Define and order the breakpoints 0, and||l i ||
µi

, with i =
1,2, . . . ,m. Succesive breakpoints define a piece.

2. On each piece find the minimum of the quadratic func-
tion.

3. Compute the overall minimum, which is the lowest value
of all such minima.

Oncex̃0 = y0 is determined,ti(y0) is computed, and the other
components of the projection are computed asl̃ i = ti(x̃0)

µi x̃0
||l i ||

.
For a large number of breakpoints we can exploit con-

vexity of ψ, by noting that we can evaluate the function at
the breakpoints, and find the minimum value. Then, by con-
vexity, the overall minimum must occur in a segment that
neighbors the breakpoint with the minimum value. Hence,
one minimizes the quadratic only in those intervals.

To summarize:

1. Define and order the breakpoints 0, and||l i ||
µi

, with i =
1,2, . . . ,m. Succesive breakpoints define a piece. We as-
sume without loss of generality that the labels have been
permuted so that the natural order has the breakpoints

in increasing order, that is,i < j ⇒ ||l i ||
µi

<
||l j ||

µ j
. If two

breakpoints have the same value, we delete their index.
2. Enumerate the objective functionψ at the breakpoints,

and find thei for which ψ( ||l i ||µi
)≤ ψ(

||l j ||
µ j

), ∀ j. If there
is one suchi, the overall minimum is on a neighboring
segment; if there are two, it is on the segment in between
(there cannot be three different indices, since the func-
tion is not piecewise constant).

3. Minimize the piecewise quadratic on either the one or
two segments identified, and report the result.

For a small number of breakpoints (i.e., the number of
conesm is small), it is not likely that this reduced method
would practically be much faster than comprehensive enu-
meration.
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